675 research outputs found

    Tverberg-type theorems for intersecting by rays

    Full text link
    In this paper we consider some results on intersection between rays and a given family of convex, compact sets. These results are similar to the center point theorem, and Tverberg's theorem on partitions of a point set

    Re-localization due to finite response times in a nonlinear Anderson chain

    Full text link
    We study a disordered nonlinear Schr\"odinger equation with an additional relaxation process having a finite response time τ\tau. Without the relaxation term, τ=0\tau=0, this model has been widely studied in the past and numerical simulations showed subdiffusive spreading of initially localized excitations. However, recently Caetano et al.\ (EPJ. B \textbf{80}, 2011) found that by introducing a response time τ>0\tau > 0, spreading is suppressed and any initially localized excitation will remain localized. Here, we explain the lack of subdiffusive spreading for τ>0\tau>0 by numerically analyzing the energy evolution. We find that in the presence of a relaxation process the energy drifts towards the band edge, which enforces the population of fewer and fewer localized modes and hence leads to re-localization. The explanation presented here is based on previous findings by the authors et al.\ (PRE \textbf{80}, 2009) on the energy dependence of thermalized states.Comment: 3 pages, 4 figure

    Appetite self-regulation: Environmental and policy influences on eating behaviors

    Get PDF
    Objective: Appetite regulation is influenced by the environment, and the environment is shaped by food-related policies. This review summarizes the environment and policy research portion of an NIH Workshop (Bethesda, MD, 2015) titled “Self-Regulation of Appetite—It's Complicated.”. Methods: In this paper, we begin by making the case for why policy is an important tool in efforts to improve nutrition, and we introduce an ecological framework that illustrates the multiple layers that influence what people eat. We describe the state of the science on how policies influence behavior in several key areas: the federal food programs, schools, child care, food and beverage pricing, marketing to youth, behavioral economics, and changing defaults. Next, we propose novel approaches for multidisciplinary prevention and intervention strategies to promote breastfeeding, and examine interactions between psychology and the environment. Results: Policy and environmental change are the most distal influences on individual-level appetite regulation, yet these strategies can reach many people at once by changing the environment in which food choices are made. We note the need for more research to understand compensatory behavior, reactance, and how to effectively change social norms. Conclusions: To move forward, we need a more sophisticated understanding of how individual psychological and biological factors interact with the environment and policy influences

    New vortex solution in SU(3) gauge-Higgs theory

    Get PDF
    Following a brief review of known vortex solutions in SU(N) gauge-adjoint Higgs theories we show the existence of a new ``minimal'' vortex solution in SU(3) gauge theory with two adjoint Higgs bosons. At a critical coupling the vortex decouples into two abelian vortices, satisfying Bogomol'nyi type, first order, field equations. The exact value of the vortex energy (per unit length) is found in terms of the topological charge that equals to the N=2 supersymmetric charge, at the critical coupling. The critical coupling signals the increase of the underlying supersymmetry.Comment: 15 page

    Potential energy threshold for nano-hillock formation by impact of slow highly charged ions on a CaF2_2(111) surface

    Full text link
    We investigate the formation of nano-sized hillocks on the (111) surface of CaF2_2 single crystals by impact of slow highly charged ions. Atomic force microscopy reveals a surprisingly sharp and well-defined threshold of potential energy carried into the collision of about 14 keV for hillock formation. Estimates of the energy density deposited suggest that the threshold is linked to a solid-liquid phase transition (``melting'') on the nanoscale. With increasing potential energy, both the basal diameter and the height of the hillocks increase. The present results reveal a remarkable similarity between the present predominantly potential-energy driven process and track formation by the thermal spike of swift (\sim GeV) heavy ions.Comment: 10 pages, 2 figure

    BF models, Duality and Bosonization on higher genus surfaces

    Full text link
    The generating functional of two dimensional BFBF field theories coupled to fermionic fields and conserved currents is computed in the general case when the base manifold is a genus g compact Riemann surface. The lagrangian density L=dBAL=dB{\wedge}A is written in terms of a globally defined 1-form AA and a multi-valued scalar field BB. Consistency conditions on the periods of dBdB have to be imposed. It is shown that there exist a non-trivial dependence of the generating functional on the topological restrictions imposed to BB. In particular if the periods of the BB field are constrained to take values 4πn4\pi n, with nn any integer, then the partition function is independent of the chosen spin structure and may be written as a sum over all the spin structures associated to the fermions even when one started with a fixed spin structure. These results are then applied to the functional bosonization of fermionic fields on higher genus surfaces. A bosonized form of the partition function which takes care of the chosen spin structure is obtainedComment: 17 page

    Nonlinear Lattice Waves in Random Potentials

    Full text link
    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transition, quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field. We will discuss recent advances in the dynamics of nonlinear lattice waves in random potentials. In the absence of nonlinear terms in the wave equations, Anderson localization is leading to a halt of wave packet spreading. Nonlinearity couples localized eigenstates and, potentially, enables spreading and destruction of Anderson localization due to nonintegrability, chaos and decoherence. The spreading process is characterized by universal subdiffusive laws due to nonlinear diffusion. We review extensive computational studies for one- and two-dimensional systems with tunable nonlinearity power. We also briefly discuss extensions to other cases where the linear wave equation features localization: Aubry-Andre localization with quasiperiodic potentials, Wannier-Stark localization with dc fields, and dynamical localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure
    corecore